home *** CD-ROM | disk | FTP | other *** search
Text File | 1994-06-05 | 3.2 KB | 138 lines | [MATS/MATL] |
- echo off;
- % NUMERICAL METHODS: MATLAB Programs, (c) John H. Mathews 1994
- % To accompany the text:
- % NUMERICAL METHODS for Mathematics, Science and Engineering, 2nd Ed, 1992
- % Prentice Hall, Englewood Cliffs, New Jersey, 07632, U.S.A.
- % This free software is complements of the author.
-
- % Algorithm 9.6 (Adams-Bashforth-Moulton Method).
- % Section 9.6, Predictor-Corrector Method, Page 471
- echo on; clc; format long; hold off; clear
-
- % This program implements Adams-Bashforth-Moulton method
-
- % for solving the initial value problem
-
- % y' = f(t,y) with y(a) = y0
-
- % Define and store the function f(t,y) in the M-file f.m
- % function z = f(t,y)
- % z = 30 - 5*y;
-
- delete f.m
- diary f.m; disp('function z = f(t,y)');...
- disp('z = 30 - 5*y;');...
- diary off;
-
- f(0,0); % Remark. f.m rk4.m abm.m are used for Algorithm 9.6
- pause % Press any key to continue.
-
- clc;
- % Place the endpoints of [a,b] in a and b.
-
- % Place the initial value ya = y(a) in ya.
-
- % Place the number of subintervals in n.
-
- a = 0;
- b = 10;
- ya = 1;
- n = 65;
-
- pause % Press any key to continue.
-
- clc;
- % Set up the step size, and vectors T and Y.
- h = (b - a)/n;
- T = zeros(1,n+1);
- Y = zeros(1,n+1);
-
- % Generate three starting values using the Runge-Kutta method.
- [Ts,Ys] = rk4('f',a,a+3*h,ya,6);
- T(1:4) = Ts(1:2:7);
- Y(1:4) = Ys(1:2:7);
-
- % Proceed with the Adams-Bashforth-Moulton method.
- [T,Y] = abm('f',T,Y);
- points = [T;Y];
-
- pause % Press any key to see the list of solution points.
-
- clc; clg;
- c = min(Y); c = 0; % Set range.
- d = max(Y); d = 7; % Set range.
- axis([a b c d]);...
- plot(T,Y,'-r');...
- hold on;...
- plot([a b],[0 0],'b',[0 0],[c d],'b');...
- xlabel('t');...
- ylabel('y');...
- Mx1 = 'Adams-Bashforth-Moulton solution to y` = f(t,y).';...
- title(Mx1);...
- grid;...
- shg; pause % Press any key to continue.
-
- Mx2 = ' t(k) y(k)';
- Mx3 = 'The Adams-Bashforth-Moulton method is stable';
- Mx4 = ['for n = ',num2str(n),' and h = '];
- Mx5 = [Mx4,num2str(h),' because'];
- Mx6 = ' h < 0.75/|f (t,y)|';
- Mx7 = ' y';
- clc,echo off,diary output,...
- disp(''),disp(Mx1),disp(''),disp(Mx2),disp(points'),...
- disp(Mx3),disp(Mx5),disp(''),disp(Mx6),disp(Mx7),...
- diary off, echo on
-
- pause % Press any key to continue.
-
- clc;
- % Place the endpoints of [a,b] in a and b.
-
- % Place the initial value y(a) in ya.
-
- % Place the number of subintervals in n.
-
- a = 0;
- b = 10;
- ya = 1;
- n = 37;
-
- pause % Press any key to continue.
-
- clc;
- % Set up the step size, and vectors T and Y.
- h = (b - a)/n;
- T = zeros(1,n+1);
- Y = zeros(1,n+1);
-
- % Generate three starting values using the Runge-Kutta method.
- [Ts,Ys] = rk4('f',a,a+3*h,ya,6);
- T(1:4) = Ts(1:2:7);
- Y(1:4) = Ys(1:2:7);
-
- % Proceed with the Adams-Bashforth-Moulton method.
- [T,Y] = abm('f',T,Y);
- points = [T;Y];
-
- pause % Press any key to see the list of solution points.
-
- clc;
- plot(T,Y,'-g');...
- xlabel('t');...
- ylabel('y');...
- title(Mx1);...
- grid;...
- axis;...
- hold off;...
- shg; pause % Press any key to continue.
-
- Mx3 = 'The Adams-Bashforth-Moulton method is unstable';
- Mx4 = ['for n = ',num2str(n),' and h = '];
- Mx5 = [Mx4,num2str(h),' because'];
- Mx6 = ' 0.75/|f (t,y)| < h';
- Mx7 = ' y';
- clc,echo off,diary output,...
- disp(''),disp(Mx1),disp(''),disp(Mx2),disp(points'),...
- disp(Mx3),disp(Mx5),disp(''),disp(Mx6),disp(Mx7),...
- diary off, echo on
-